

Thursday, April 28, 2011



Thursday, April 28, 2011





## HISTORICAL OVERVIEW

- 1953 Watson-Crick.
- 1980's block models are popular. Dickerson-Drew dodecamer (1981). Calladine-Drew A to B conformational change seen from the base perspective.
- 1988 Cambridge accord for base-pair and bp step paramters.
- 1999 Tsukuba / 2001 JMB Standard Reference Frame.
- 2003 13th Albany Conversation Standard Method.
  3DNAV1
- 2008 3DNAV2
- 2009 Curves+



This figure is purely diagrammatic. The two ribbons symbolize the two phosphate—sugar chains, and the horizontal rods the pairs of bases holding the chains together. The vertical line marks the fibre axis

### THESE ARE THE EIGHTIES FOR NUCLEIC ACIDS

Major Groove

#### C. R. CALLADINE AND H. R. DREW

A-C-C (Shakked *et al.*, 1983) and r(G-C-G)-T-A-T-A-C-G-C (Wang *et* But in these structures they assume a quite different configuration. As gure 3(a). Y-R steps in A-DNA slide forward to  $\sigma = +1.5$  Å so as to nsive cross-strand overlap of the large R bases. Further, the roll angle a value near  $+15^{\circ}$  since Y and R bases within any strand no longer rallel but open up towards the minor groove. The two configurations coupled roll-slide motion, which is a direct consequence of the ist and the different size of the Y and R bases.

that the definite differences observed between B form and A form rangements of Y-R steps are the primary source of bistability in the sition. These steps are not forced by the backbones into one of two higurations, as in the traditional description;

ackbone into either of two general shapes.

e data from all 45 available X-ray sequence ste In the plot of Figure 4, the complete set of p nlv in a band. clustered about an imaginar

776



(O)



#### calladine-drew 1986

#### C. R. CALLADINE AND H. R. DREW



### ALTERNATE DESCRIPTIONS OF MOLECULAR STRUCTURE

blocks''

- classic mechanics - quantum mechanics

All-atom

- reduced set of atoms, e.g.  $C\alpha$ in proteins.
- pseudo-bond/angles

Coarse-Grained

- <u>rigid-bodies</u>, e.g. ''just like lego

## NDB/PDB COLOR CONVENTION



Purines aka  $\mathbf{R}$  = Guanine (green) and Adenine (red) Pyrimidines aka  $\mathbf{Y}$  = Citosine (yellow), Thymine (blue) and Uracil (cyan)

## STANDARD REFERENCE FRAME





### CALLADINE-DREW RIGID-BLOCK MODEL



### CALLADINE-DREW RIGID-BLOCK MODEL

Base-Pair-Step Parameters



### PROGRAMS TO COMPUTE RIGID-BODY PARAMETERS. BASE-CENTERED FORMALISM

NEW

- <u>3DNA</u> (Xiang-Jun Lu @ Columbia, Bussemaker lab.)
  - <u>http://w3dna.rutgers.edu</u>
  - <u>http://rutchem.rutgers.edu/~xiangjun/3DNA</u>
  - 3dnaV2, UNIX preferred (linux, OS-X, freebsd, cygwin ''yikes!'')
- curves+ (Richard Lavery @ Universite d' Lyon)

OLD

• FREEHELIX, RNA, SCHNAaP, SCHNArP, compDNA, NUPARM

#### WHAT'S A BASE-PAIR IN 3DNA? look at misc\_3dna.par

- The distance between the origins of the two bases (as defined by their standard reference frames) must be less than certain limit (15.0 Å by default) otherwise, they would be too far away to be called a pair.
- The vertical separation (i.e., stagger) between the two bases must be less than certain limit (2.5 Å by default) otherwise, they would be stacking instead of pairing.
- The angle between the two base z-axes (i.e., their normal vectors) is less than a cut-off (65.0° by default).
- There is at least one pair of nitrogen/oxygen base atoms that are within a Hbonding cut off distance (4.0 Å by default).

## BASE-PAIR DATABASES

• <u>http://bps.rutgers.edu</u> for RNA

• <u>http://3dnascapes.rutgers.edu</u> for DNA

### NON-CANONICAL BASE-PAIRS AND MULTIPLE BASE INTERACTIONS

#### seven most predominant base-pairs in RNA

pentuplet from the ribosome



#### RNA BASE-PAIRS ARE MAINLY DEFORMED VIA SHEAR AND OPENING

#### Scatterplots for all Base-Pair Parameters (82.2% WC(red) and 17.8% (blue) non-WC)



Thursday, April 28, 2011

#### THE MOST PREDOMINANT BASE-PAIRS IN RNA ARE CIS W/W, TRANS H/S AND TRANS H/W



#### UNIQUE BASE-PAIR STEPS IN RNA CAN BE MORE THAN TEN

| i+1<br>i          | A·U                                            | U·A                                  | G•C                          | <mark>C</mark> ∙G                              | G·U                          | U∙G                                  |
|-------------------|------------------------------------------------|--------------------------------------|------------------------------|------------------------------------------------|------------------------------|--------------------------------------|
| U·A               | 5′ 3′<br>↓ <b>U·A</b><br>↓ <b>A·U</b><br>3′ 5′ | 5′ 3′<br>↓ U•A ↓<br>3′ 5′            | 5' U·A ↓<br>↓ G·C ↓<br>3' 5' | 5′ 3′<br>↓ <b>U·A</b><br>↓ <b>C·G</b><br>3′ 5′ | 5' U·A ↓<br>↓ G·U  <br>3' 5' | 5′ 3′<br>↓ U·A ↓<br>↓ U·G  <br>3′ 5′ |
| A·U               | 5' <b>A·U</b> ↓                                | 5' <b>A·U</b> ↓                      | 5' <b>A·U</b> ▲              | 5' <b>A·U</b> ▲                                | 5' <b>A·U</b> ▲              | 5' <b>A·U</b> ▲                      |
|                   | ↓ <b>A·U</b> ↓                                 | ↓ <b>U·A</b> ↓                       | ↓ <b>G·C</b> ↓               | ▼ C·G                                          | ▼ <b>G·U</b> ↓               | ↓ <b>U·G</b> ↓                       |
|                   | 3' 5'                                          | 3' 5'                                | 3' 5'                        | 3' 5'                                          | 3' 5'                        | 3' 5'                                |
| <mark>C</mark> ∙G | 5' C·G ↓                                       | 5' C·G ↓                             | 5' C·G ↓                     | 5' C·G ↓                                       | 5' C·G ↓                     | 5' C·G ↓                             |
|                   | ↓ A·U                                          | ↓ U·A                                | ↓ G·C ↓                      | ↓ C·G ↓                                        | ↓ G·U                        | ↓ U·G ↓                              |
|                   | 3' 5'                                          | 3' 5'                                | 3' 5'                        | 3' 5'                                          | 3' 5'                        | 3' 5'                                |
| G•C               | 5' G·C ↓<br>↓ A·U ↓<br>3' 5'                   | 5′ 3′<br>  G·C ↓<br>↓ U·A  <br>3′ 5′ | 5' G·C ↓<br>↓ G·C ↓<br>3' 5' | 5' 3'<br>  G·C ↓<br>↓ C·G  <br>3' 5'           | 5' G·C ▲<br>↓ G·U  <br>3' 5' | 5' G·C ▲<br>↓ U·G ↓<br>3' 5'         |
| U∙G               | 5′ 3′                                          | 5′ 3′                                | 5' 3'                        | 5′ 3′                                          | 5' 3'                        | 5′ 3′                                |
|                   | <b>U·G</b> ↓                                   | <b>U·G</b> ↓                         | <b>U·G</b> ↓                 | <b>U·G</b> ↓                                   | <b>U·G</b> ▲                 | U·G ↓                                |
|                   | ↓ <b>A·U</b>                                   | ↓ <b>U·A</b>                         | ▼ G·C                        | ▼ C·G                                          | ▼ G·U                        | ↓ U·G                                |
|                   | 3′ 5′                                          | 3′ 5′                                | 3' 5'                        | 3′ 5′                                          | 3' 5'                        | 3′ 5′                                |
| G·U               | 5' 3'                                          | 5′ 3′                                | 5' 3'                        | 5' 3'                                          | 5' 3'                        | 5' 3'                                |
|                   | <b>G·U</b> ↓                                   | <b>G·U</b> ↓                         | G•U ↓                        | <b>G·U</b> ↓                                   | G·U ↓                        | <b>G·U</b> ↓                         |
|                   | <b>A·U</b>                                     | ↓ <b>U·A</b>                         | ↓ G•C                        | ▼ C·G                                          | ↓ G·U ↓                      | ↓ U·G                                |
|                   | 3' 5'                                          | 3′ 5′                                | 3' 5'                        | 3' 5'                                          | 3' 5'                        | 3' 5'                                |

Thursday, April 28, 2011

#### USE OF 3DNA ON X-RAY STRUCTURES AND PARAMETER ANALYSIS

- With average base-pair-step parameters, average base-pair steps can be rebuilt.
- Go to <u>http://rnasteps.rutgers.edu</u>, download parameters and rebuild in <u>http://w3dna.rutgers.edu</u>.

| RNA BASE-PAIR STEP PARAMETERS                             |       |       |       |       |      |      |      |       |        |      |
|-----------------------------------------------------------|-------|-------|-------|-------|------|------|------|-------|--------|------|
| Stack<br>Type                                             | Step  | Count | Shift | Slide | Rise | Tilt | Roll | Twist | Volume | RMSD |
| RR                                                        | GG.CC | 1274  | -0.01 | -1.85 | 3.30 | 0.0  | 7.4  | 31.1  | 2.0    | 0.35 |
| YR                                                        | UG.CA | 700   | 0.03  | -1.59 | 3.16 | 0.2  | 10.6 | 30.7  | 1.2    | 0.31 |
| RY                                                        | GC.GC | 587   | 0.02  | -1.56 | 3.20 | 0.0  | 4.2  | 33.5  | 1.3    | 0.34 |
| YR                                                        | CG.CG | 562   | 0.05  | -1.84 | 3.29 | 0.3  | 10.8 | 29.1  | 2.2    | 0.35 |
| RR                                                        | AG.CU | 547   | 0.06  | -1.66 | 3.25 | -0.1 | 8.2  | 30.1  | 0.5    | 0.35 |
| RY                                                        | AC.GU | 546   | 0.14  | -1.48 | 3.22 | 0.3  | 4.9  | 32.7  | 1.5    | 0.33 |
| RR                                                        | GA.UC | 484   | 0.02  | -1.61 | 3.20 | 0.0  | 5.9  | 32.6  | 2.2    | 0.36 |
| RR                                                        | AA.UU | 241   | -0.08 | -1.38 | 3.16 | -0.4 | 7.1  | 31.6  | 1.0    | 0.32 |
| RY                                                        | GC.GU | 237   | 0.06  | -1.25 | 3.21 | 0.0  | 4.4  | 41.4  | 0.6    | 0.28 |
| RR                                                        | GG.CU | 180   | 0.01  | -1.76 | 3.31 | -0.2 | 5.0  | 37.1  | 2.0    | 0.39 |
| <previous 1="" 2="" 3="" next="" pre="" »<=""></previous> |       |       |       |       |      |      |      |       |        |      |

| 1.3  | 182 | 3.5   |                                                                                                                                  |
|------|-----|-------|----------------------------------------------------------------------------------------------------------------------------------|
| 0.6  |     |       | $TV \cap E D \land CE D \land ID CTEDC IN I D \land IC$                                                                          |
|      |     | ADILI | $    \cup   \cup   \cup   \cup   \cup   \cup   \cup   \cup   \cup  $                                                             |
| 2.2  | 160 | 4.9   |                                                                                                                                  |
| 12.4 |     | SE    | $() \cup \vdash   \cup \vdash \vdash \mid ) \vdash \vdash \mid \mid$ |
| 10.3 |     |       |                                                                                                                                  |



# UA·UA UG·UG less deformable more deformable

### RNA SEQUENCE HAS SUBTLE EFFECTS ON THE STRUCTURE OF RNA



homopolymers block copolymers

| slide = $-1.5$ | slide = 0.0  |
|----------------|--------------|
| rise = 3.30    | rise = 3.36  |
| tilt = 0.0     | tilt = 0.0   |
| roll = 0.0     | roll = 0.0   |
| twist = 31.6   | twist = 36.0 |

### RNA HELICAL REGIONS IN THE RIBOSOME



Thursday, April 28, 2011

#### HARMONIC POTENTIAL MODEL FOR NUCLEIC ACIDS

- From Base-pair step parameters, inverse covariance matrix and you get analog to force-constant matrix.
- With force constants you can make a simple spring model, your good ole Hooke's law in sixth dimension.

$$\Psi = \frac{1}{2} \sum_{i,j} F_{ij} \Delta x_i \Delta x_j$$
$$(\Delta x_i = x_i - x_{i0})$$
$$U = \sum_{n=1}^{N} \Psi_n$$

#### HARMONIC POTENTIALS FOR RNA BASE-PAIR STEPS SHOW SEQUENCE PREFERENCES



## DNATRIPLE HELICES WITH BLOCVIEW



### USE AND APPLICATION OF THE RIGID-BODY PARAMETER FORMALISM

- General analysis of sequence dependent properties of DNA.
- Compute deformation scores for DNA based on X-ray data standards.
- From step-parameter information and inverse covariance analysis a link can be made to global polymer properties, e.g. persistence length, J-factors (cyclization probability)
- Compute topological properties of nucleic acids, e.g. linking number, twist, writhe.

## REFERENCES

#### BOOKS

- Calladine, C. R. & Drew, H. R. & Luisi B. F. & Travers A. A Understanding DNA:The Molecule and How It Works Elsevier, 2004

- Saenger, W. Principles of Nucleic Acid Structure Springer-Verlag, 1984

- Flory, P.J. Statistical Mechanics of Chain Molecules Interscience Publishers, 1969

#### ARTICLES

- Watson, J. D. & Crick, F. H. Molecular Structure of Nucleic Acids; A Structure for Deoxyribose Nucleic Acid Nature, 1953, 171, 737-738 - Calladine, C. R. & Drew, H. R. A Base-centred Explanation of the B-to-A Transition in DNA Journal of Molecular Biology, 1984, 178, 773-782

- Dickerson, R. E.; Bansal, M.; Calladine, C. R.; Diekman, S.; Hunter, W. N.; Kennard, O.; von Kitzing, E.; Lavery, R.; Nelson, H.; Olson, W. K. & Saenger, W. Definitions and Nomenclature of Nucleic Acid Structure Components Nucleic Acid Research, 1989, 17, 1797-1803

- Olson, W. K.; Bansal, M.; Burley, S. K.; Dickerson, R. E.; Gerstein, M.; Harvey, S. C.; Heinemann, U.; Lu, X.-J.; Neidle, S.; Shakked, Z.; Sklenar, H.; Suzuki, M.;Tung, C.-S.; Westhof, E.; Wolberger, C. & Berman, H. A Standard Reference Frame for the Description of Nucleic Acid Base-pair Geometry Journal of Molecular Biology, 2001, 313, 229-237

- Lu, X.-J. & Olson, W. **3DNA**: A Software Package for the Analysis, Rebuilding and Visualization of the Three-Dimensional Nucleic Acid Structures Nucleic Acids Research, **2003**, 31, 5108-5121

 Lu, X.-J. & Olson, W. K.
 **3DNA**: A Versatile, Integrated Software System for the Analysis, Rebuilding and Visualization of Three-Dimensional Nucleic-Acid Structures
 Nature Protocols, Department of Chemistry and Chemical Biology and BioMaPS Institute for Quantitative Biology, Rutgers-The State University of New Jersey, Piscataway, New Jersey 08854-8087, USA. <u>3dna.lu@gmail.com</u>, **2008**, 3, 1213-1227 - Olson, W. K.; Gorin, A. A.; Lu, X.-J.; Hock, L. M. & Zhurkin, V. B. DNA Sequence-Dependent Deformability Deduced from Protein-DNA Crystal Complexes Proceedings of the National Academy of Sciences, 1998, 95, 11163-11168

#### Exercises

- Create A-DNA, B-DNA, Z-DNA, A-RNA and visualize in pymol.
- Analyze A-RNA. Modify the sequence in base\_step.par, rebuild with modified sequence and visualize in pymol.
- modify again base\_step.par but increase the slide in a step by 2 Angstroms.
- Find multiplets in structure, then extract one, then visualize it inside the structure and isolate it using pymol.

